Thesis Distortions to Current-voltage Curves of Cigs Cells with Sputtered
نویسندگان
چکیده
Sputtered-deposited Zn(O,S) is an attractive alternative to CdS for Cu(In, Ga)Se 2 (CIGS) thin-film solar cells' buffer layer. It has a higher band gap and thus allows greater blue photon collection to achieve higher photon current. The primary goal of the thesis is to investigate the effects of the secondary barrier at the buffer-absorber interface on the distortions to current-voltage (J-V) curves of sputtered-Zn(O,S)/CIGS solar cells. A straightforward photodiode model is employed in the numerical simulation to explain the physical mechanisms of the experimental J-V distortions including J-V crossover and red kink. It is shown that the secondary barrier is influenced by both the internal material properties, such as the conduction-band offset (CBO) and the doping density of Zn(O,S), and the external conditions, such as the light intensity and operating temperature. A key parameter for the sputter deposition of Zn(O,S) has been the oxygen fraction in the argon beam. It is found that the CBO varies with the oxygen fraction in the argon beam at a fixed temperature. With a greater CBO (∆í µí°¸í µí° ¶ > 0.3 í µí±í µí±), the resulting energy barrier limits the electron current flowing across the interface and thus leads to the J-V distortion. Two different ZnS targets, non-indium and indium-doped one, were used to deposit the Zn(O,S) buffer layer. At the same oxygen fraction in argon beam, a non-In-doped Zn(O,S) buffer with a smaller amount of doping forms a greater secondary barrier to limit the electron current due to the compensation of the Zn(O,S) buffer layer. In addition, the temperature-dependent J-V crossover can be explained by the temperature-dependent impact of the secondary barrier – at lower temperature in the dark, the maximum iii distortion-free barrier is reduced and results in a more serious current limitation, indicating a greater J-V crossover. It is also found that, under low-intensity illumination, there is a lower doping density of Zn(O,S) due to a smaller amount of photons with ℎí µí¼ > í µí°¸í µí±(í µí±í µí±(í µí±,í µí±) which can excite the buffer layer to release the trapped electrons from the deep-level defect state. The result is a greater secondary barrier to limit the electron current through the interface and shift the light J-V curve right towards the dark J-V curve at high bias (í µí± > í µí± í µí±í µí° ¶) which reduces the J-V crossover. Finally, the quantitative comparison of J-V distortion between simulation …
منابع مشابه
Numerical Simulation of CdS/CIGS Tandem Multi-Junction Solar Cells with AMPS-1D
Numerical modeling of polycrystalline thin-film solar cell serves as an imperative procedure to test the suitability of proposed physical clarification and to anticipate the effect of physical changes on cell performance. All in all, this must be conducted with only partial knowledge of input parameters. In this paper, we evaluated the numerical simulation of CdS/CIGS tandem multi junction sola...
متن کاملExplanation of Light/Dark Superposition Failure in CIGS Solar Cells
CIGS solar cells in many cases show a failure of light/dark superposition of their currentvoltage (J-V) curves. Such failure generally becomes more pronounced at lower temperatures. J-V measurements under red light may also show an additional distortion, known historically as the “red kink”. The proposed explanation is that a secondary barrier results from the conduction band offset between CIG...
متن کاملEnhancing the light absorbance of polymer solar cells by introducing pulsed laser-deposited CuIn0.8Ga0.2Se2 nanoparticles
UNLABELLED Evenly separated crystalline CuIn0.8Ga0.2Se2 (CIGS) nanoparticles are deposited on ITO-glass substrate by pulsed laser deposition. Such CIGS layers are introduced between conjugated polymer layers and ITO-glass substrates for enhancing light absorbance of polymer solar cells. The P3HT:PCBM absorbance between 300 and 650 nm is enhanced obviously due to the introduction of CIGS nanopar...
متن کاملEmploying Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells
Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passiv...
متن کاملPerformance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In1-xGax)Se2 Thin-Film Solar Cells
Chemically deposited ZnS has been investigated as a buffer layer alternative to CdS in polycrystalline thin-film Cu(In1-xGax)Se2 (CIGS) solar cells. Cells with efficiency of up to 18.1 % based on CBD-ZnS/CIGS heterostructures have been fabricated. This paper presents the performance and loss analyses of these cells based on the current-voltage (J-V) and spectral response curves, as well as comp...
متن کامل